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Abstract

We extend the well-known static spatial lag model by introducing a new model with time-
varying spatial dependence. We show that the updating steps in this model have information
theoretic optimality properties. All parameters of the model can be conveniently estimated
by maximum likelihood. We establish the theoretical properties of the model and show that
the maximum likelihood estimators of the static parameters are consistent and asymptotically
normal. Using spatial weights based on cross-border lending data and European sovereign
CDS spread data over the period 2009–2014, we find high, time-varying spatial spillovers in
the perceived credit riskiness of European sovereigns during the sovereign debt crisis. We find
a particular downturn in spatial dependence in the first half of 2012 after the policy measures
taken by the European Central Bank. The findings are robust to a wide range of alternative
model specifications.
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1 Introduction

We propose a new parsimonious model to measure the time-varying cross-sectional dependence

in European sovereign credit spread changes. The model builds on the well-known spatial lag

model for panel data. The strength of contemporaneous spillover effects is summarized in a single

time-varying parameter: the spatial dependence parameter. We argue that this parameter may be

interpreted as a measure of sovereign systemic risk that relates to the connectedness of the system.

Our paper contributes to two strands of literature. First, we contribute to the applied spatial

econometrics literature. Spatial models have been widely used in applied geographic and regional

science studies, and have recently also been applied in empirical finance; see Fernandez (2011)

for a CAPM model augmented by spatial dependencies, Wied (2013), Arnold et al. (2013), and

Asgharian et al. (2013) for analyses of spatial dependencies in stock markets, Denbee et al. (2013)

for a network approach to assess interbank liquidity, and Saldias (2013) for a spatial error model

to identify sector risk determinants. Keiler and Eder (2013) and Tonzer (2013) both use spatial lag

models, to model CDS spreads of financial institutions and banking sector risks, respectively.

All of the above models, however, treat the spatial dependence parameter as static. To the best

of our knowledge, explicitly endowing the spatial dependence parameter in the spatial lag model

with time series dynamics is a new development. Allowing for such dynamics may be important

empirically; see for example our financial systemic stability application in Section 6. We model

the dynamics using the score driven framework proposed by Creal et al. (2011, 2013) and Harvey

(2013). Given the nonlinear impact of the time-varying parameter on the model, the theoretical

properties of this model and the asymptotic properties of the maximum likelihood estimator (MLE)

for the remaining static parameters are challenging and have not been established so far. We show

under what conditions the filtered spatial dependence parameters are well behaved, such that the

model is invertible. Invertibility is a key property for establishing consistency and asymptotic

normality of the MLE; see for example Wintenberger (2013). We derive new conditions for the

asymptotic properties of the MLE compared to Blasques et al. (2014b), allowing for exogenous

regressors to be part of the specification. We also discuss the information theoretic optimality of

the model and illustrate in a simulation study that the model is able to track a range of different

patterns for the time-varying spatial dependence parameter.

Second, we contribute to the literature that studies the dynamics of financial systemic risk in
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the context of a network of sovereigns or financial firms. Since the beginning of the European

sovereing debt crisis in 2009, the sharp increases and comovements of sovereign credit spreads

have been the subject of a growing number of empirical studies in finance. For instance, by

employing an asset pricing model, Ang and Longstaff (2013) investigate the differences between

U.S. and European credit default swap (CDS) spreads as a reflection of systemic risk. Lucas

et al. (2014) and Kalbaska and Gatkowski (2012) use multivariate time series models to model

comovements in European sovereign CDS spreads. Ait-Sahalia et al. (2014) model sovereign

credit default intensities using multivariate jump processes. De Santis (2012) and Arezki et al.

(2011) study credit risk spillover effects that are induced by rating events, such as downgrades

of Greek government bonds. Leschinski and Bertram (2013) find contagion effects in European

sovereign bond spreads using the simultaneous equations approach of Pesaran and Pick (2007).

Caporin et al. (2013), on the other hand, employ Bayesian quantile regressions, and conclude that

comovements in European credit spreads during the debt crisis are only due to increased volatities,

but not contagion.

Our approach differs from the studies above since we introduce cross-sectional correlation not

only through contemporaneous error correlations, but also through spillovers induced by shocks to

the regressors, such as stock market crashes or interbank lending rates. Furthermore, we explicitly

offer financial sector linkages as the source of sovereign credit risk comovements. This view is

supported by the results of Korte and Steffen (2013), Kallestrup et al. (2013), Gorea and Radev

(2013), and Beetsma et al. (2012), in which cross-border exposures between international financial

sectors are relevant drivers of sovereign credit spreads. By exploiting these debt interconnections

as economic distances between sovereigns in our spatial model, we obtain a scalar time-varying

(spatial) dependence coefficient. We interpret this parameter in the systemic context as the overall

tendency for shock spillovers. As such, it provides a measure of systemic risk that is easy to

monitor over time. Also, in contrast to earlier empirical literature, we allow the spatial dependence

parameter to vary over time, implying that sovereign interconnectedness and therefore systemic

risk, may be time-varying as well.

We organize the remainder of this paper as follows. Section 2 introduces our spatial score

model with time-varying parameters and states that the updating mechanism possesses information

theoretic optimality properties. We examine the theoretical properties of the model in Section 3.

In Section 4, we provide Monte Carlo evidence of the model’s ability to track different dynamic

patterns in spatial dependence over time. Section 5 describes the data for our study on European

sovereign CDS spread dynamics. Section 6 provides the results, and Section 7 concludes.
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2 Spatial models with dynamic spatial dependence

2.1 Static spatial lag model for panel data

The spatial lag model for panel data is given by

yt = ρWyt +Xtβ + et, et ∼ pe(et; Σ, λ), t = 1, . . . , T, (1)

where yt = (y1t, . . . , ynt)
′ denotes a vector of n cross-sectional observations at time t, ρ is the

spatial dependence coefficient, W is an n×n matrix of exogenous spatial weights, Xt is an n× k

matrix of exogenous regressors, β is a k×1 vector of unknown coefficients, including an intercept,

and et is an n × 1 disturbance vector with multivariate density pe(et,Σ;λ), mean zero, unknown

k×k covariance (or scale) matrix Σ, and other parameters describing the shape of the distribution

as collected in the parameter vector λ. For example, if pe is a Student’s t distribution, λ denotes

the degrees of freedom parameter.

Model (1) implies that each entry yit, for i = 1, . . . , n, of the vector yt depends on k

individual-specific regressors xit as well as on other entries yjt for j 6= i. For a moderately large

n, we cannot estimate such a system of contemporaneous dependencies without imposing further

restrictions. The idea of a spatial dependence model is to specify the spatial weight matrix W as

a function of geographic or economic distances, and in this way exogenously define a neighbor-

hood structure between the cross-sectional units. It is standard practice to use a row-normalized

weight matrix W such that
∑n

j=1wij = 1 for i = 1, . . . , n, where wij is the (i, j)th element of

W . The impact of the (spatially weighted) contemporaneous dependent variables Wyt on yt is

captured by a scalar spatial dependence parameter ρ. For shocks to die out over space, we require

ρ ∈ (1/ωmin, 1) where ωmin is the smallest eigenvalue of W ; see for example Lee (2004).

The basic form of the spatial lag model (1) can capture nonlinear feedback effects across units.

This can be shown by rewriting the model as

yt = ZXtβ + Zet, (2)

where we assume that the inverse matrix Z = (In − ρW )−1 exists, with In denoting the n × n

identity matrix. Using an infinite power series expansion as in LeSage and Pace (2008), we obtain

yt = Xtβ + ρWXtβ + ρ2W 2Xtβ + · · ·+ et + ρWet + ρ2W 2et + · · · . (3)
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Equation (3) reveals that eit and x′itβ for unit i spill over to other units j 6= i. The extent of

spillover depends on the relative proximity of j to i via the weight matrix W and the spatial

dependence parameter ρ. At the same time, there are possible feedback effects back to unit i itself,

for example if wij and wji are both non-zero, such that i and j are mutual neighbors, and i is a

‘second-order neighbor’ to itself.

The simultaneous equations structure of (1) leads to an endogeneity problem and causes the

least squares estimator in (1) to be inconsistent, As an alternative solution, we can estimate the

parameters by the method of Maximum Likelihood (ML) or Quasi-ML (QML) where the latter

is typically based on the normal distribution.1 The ML Estimator (MLE) for spatial models with

static dependence parameter was first studied in Ord (1975) in the context of cross-sectional data

sets. Lee (2004) derives asymptotic properties of the QML Estimator (QMLE) for n → ∞,

and Hillier and Martellosio (2013) investigate its finite sample distribution. Large n and large T

asymptotics for the QMLE of the spatial model with static dependence parameter are studied in

Yu et al. (2008). For further textbook treatments, we refer to Anselin (1988) and LeSage and Pace

(2008). For a survey on the panel data spatial lag model and parameter estimation, see Lee and Yu

(2010).

2.2 Score dynamics for the spatial dependence parameter

We can interpret the spatial dependence parameter ρ in (1) as a measure of the strength of cross-

sectional spillovers. In many empirical applications involving panel data, it is unrealistic to assume

that ρ is constant over the entire sample period. We therefore introduce a time-varying spatial

dependence parameter ρt in the model, that is

yt = ρtWyt +Xtβ + et, et ∼ pe(et; Σ, λ), t = 1, . . . , T, (4)

where ρt = h(ft) is a monotonic transformation of a time-varying parameter ft. We choose the

link function h such that ρt ∈ (−1, 1). To describe the dynamics of ft, we adopt the autoregres-

sive score framework of Creal et al. (2011, 2013) and Harvey (2013). The score framework for

time-varying parameters has been adopted successfully in a range of different empirical settings,

including the multivariate volatility model of Creal et al. (2011), the systemic risk model of Oh

and Patton (2013) and Lucas et al. (2014), the credit risk dynamic factor model of Creal et al.

(2014), and the location and scale models with fat tails of Harvey and Luati (2014).2

1Alternatively, we can use GMM as in, for example, Kelejian and Prucha (2010).
2See www.gasmodel.com for a more complete compilation of papers.
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The score framework centers around the use of the scaled score of the conditional density pe

to drive the time-variation in ft. The updating equation for ft is given by

ft+1 = ω +Ast +Bft, (5)

where ω, A, and B are fixed unknown parameters, and st = St∇t is the scaled score function.

The scaled score function is defined as the first derivative of the predictive loglikelihood function

at time t with respect to ft, possibly multiplied by some local scaling factor St. In our case, the

score function is given by∇t = ∂`t/∂ft where

`t = log pe (yt − h(ft)Wyt −Xtβ,Σ;λ) + log |(In − h(ft)W )| . (6)

Throughout this paper, we use unit scaling, that is St ≡ 1 such that st = ∇t. Other scaling

choices are also feasible; see Creal et al. (2013).3 Equation (6) differs from the likelihood of

a simple linear regression model by the term log |(In − h(ft)W )|. This term accounts for the

nonlinearity of the model in ρt as shown in equation (2). We define the vector of static parameters

θ = (ω,A,B, β, λ)′ and estimate θ via the numerical maximization of the likelihood function

LT =

T∑
t=1

`t. (7)

We consider two specifications for the disturbance density pe, namely the multivariate normal

distribution and the multivariate Student’s t distribution. The latter is particularly relevant for our

empirical study because changes in credit default swap (CDS) spreads may be fat-tailed. Also,

Creal et al. (2011) and Harvey and Luati (2014) argue that the Student’s t distribution can render

the dynamics more robust to incidental influential observations and outliers.

Using the standard expression for the multivariate normal density, we obtain the time t contri-

bution to the loglikelihood function as

`t = log |I− h(ft)W | −
n

2
log(2π)− 1

2
log |Σ|

−1

2
(yt − h(ft)Wyt −Xtβ)′Σ−1(yt − h(ft)Wyt −Xtβ),

3In a simulation (not reported here) we show that different choices of scaling, such as scaling by the inverse infor-
mation matrix scaling or by its square root, did not have much impact on our empirical results.
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and the resulting score

∇t =
(
y′tW

′Σ−1(yt − h(ft)Wyt −Xtβ)− tr(Z(ft)W )
)
· ḣ(ft), (8)

where tr(·) is the trace operator, Z(ft) = (In−h(ft)W )−1, and ḣ(ft) is the first derivative of the

transformation function h with respect to ft. For instance, if h(ft) = γ tanh(ft) with γ ∈ (0, 1),

then ḣ(ft) = γ(1 − tanh2(ft)). When the density of the disturbance vector et is a multivariate

Student’s t distribution with λ degrees of freedom, we obtain

`t = log |Z(ft)
−1|+ log

(
Γ
(
λ+n

2

)
|Σ|1/2(λπ)n/2Γ

(
λ
2

))

−
(
λ+ n

2

)
log

(
1 +

(yt − h(ft)Wyt −Xtβ)′Σ−1(yt − h(ft)Wyt −Xtβ)

λ

)
,

with the corresponding score function

∇t =
(
w̃t · y′tW ′Σ−1(yt − h(ft)Wyt −Xtβ)− tr(Z(ft)W )

)
· ḣ(ft), (9)

w̃t = (1 + λ−1n)
/(

1 + λ−1(yt − h(ft)Wyt −Xtβ)′Σ−1(yt − h(ft)Wyt −Xtβ)
)
.

Is is easy to verify that for λ → ∞ we obtain w̃t → 1. The score expression in (9) in that case

collapses to the one in (8). The weight w̃t is small if the residuals yt−h(ft)Wyt−Xtβ are ‘large’

in a multivariate sense. The implication of a small weight w̃t is that the observation has a smaller

impact on the updates of ft. This provides a robustness feature to the dynamics of ft if we assume

a fat-tailed distribution such as the Student’s t; see also the discussion in Creal et al. (2011, 2013)

and Harvey (2013). The intuition is straightforward: a large residual may be attributable to the fat-

tailedness of the Student’s t distribution rather than to a recent increase in the spatial correlation

parameter ρt = h(ft).

The score expressions in (8) and (9) also depart from the expressions for the standard linear

regression model. In particular, the additional correction term −tr(Z(ft)W ) accounts for the

simultaneity bias in the standard least squares estimator and follows from the presence of the

term log |Z(ft)
−1| in the likelihood at time t. Economically, this term accounts for the fact that

there may be feedback effects from unit i to unit j and then back to unit i. Hence the spatial

autoregressive score model integrates time-varying direct and indirect effects; both are used to

determine the appropriate transition dynamics for ρt.
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2.3 Optimality of score updating in the time-varying spatial model

The score-driven framework may provide an intuitively and statistically appealing way to update

the time-varying spatial dependence parameter ρt. But possibly more importantly, the score based

updates have also optimal properties in an information theoretic sense under very mild regularity

conditions. This was proven in a generic setting by Blasques et al. (2014a). To understand the

issue for our particular time-varying spatial dependence model, we repeat the main argument of

Blasques et al. (2014a) for our specific setting.

Let pt := p( · |Xt) denote the true unknown conditional density of yt. Similarly, let p̃t :=

p̃( · |f̃t, Xt) denote the conditional density implied by the score model given the filtered time-

varying parameter f̃t, the regressors Xt, the postulated innovation density pe, and the static pa-

rameter vector θ. Ideally, whenever a new observation yt becomes available, we want the filtered

value f̃t+1 to be such that the new conditional density implied by the model p̃t+1 := p̃(·|f̃t+1, Xt)

is as close as possible to the true unknown conditional density pt from which yt was drawn.

Following Blasques et al. (2014a), we focus on the notion of Kullback-Leibler divergence to

measure the distance between the two densities

DKL

(
pt , p̃t+1

)
=

∫
Y
p(y|Xt) log

p(y|Xt)

p̃(y|f̃t+1, Xt;θ)
dy, (10)

where Y ⊆ R is the set over which the divergence is evaluated locally. In particular, we would

like an update f̃t+1 for which the divergence DKL(p( · |ft, Xt) , p̃( · |f̃t+1, Xt)) is smaller than

the previous divergence DKL(p( · |ft, Xt) , p̃( · |f̃t, Xt)), implying that the update from f̃t to f̃t+1

reduces the Kullback-Leibler divergence to the true unknown conditional density.

We can show that only score updates are very special in the following sense.

PROPOSITION 2.1 (Proposition 2 in Blasques et al. (2014a)). A smooth observation driven update

from f̃t to f̃t+1 is optimal in the sense of DKL(pt, p̃t+1) < DKL(pt, p̃t) for every (yt, f̃t, f̃t) if and

only if the update is score equivalent.

It follows that only score (equivalent) updates have the property that they always locally reduce

the Kullback-Leibler divergence and thus provide a local improvement to the statistical model

given the data. In particular, the spatial model structure and Student’s t specification in Section 2.2

are sufficiently smooth for all local optimality results to apply. Moreover, the score driven time-

varying spatial correlation model is sufficiently regular to also obtain non-local regions where the

score steps ensure Kullback-Leibler improvements. We refer to Blasques et al. (2014a) for more

details, optimality results, and proofs.
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3 Statistical properties of the model

In this section, we establish the existence, strong consistency and asymptotic normality of the

MLE of the static parameters θ that define the stochastic properties of the spatial score model from

Section 2. We first present the results in a more general setting than the spatial score model, thus

extending the results in Blasques et al. (2014b) to allow for the presence of exogenous regressors.

We then particularize the results to the MLE for the spatial score model in Corollary 1. All proofs

of the results stated in this section can be found in the supplemental appendix.

3.1 Stochastic properties of the filtered spatial dependence parameter

To establish the consistency and asymptotic normality of the MLE, we first study the stochastic

properties of the filtered parameter ft defined through equations (5), (8), and (9). The filtered fts

directly determine the time-varying spatial parameter ρt = h(ft). Understanding the properties of

the filtered parameters is key to understanding the stochastic properties of the likelihood function

over the parameter space Θ.

We first introduce some additional notation. Let the T -period sequences {yt(ω)}Tt=1 and

{Xt(ω)}Tt=1 be subsets of the realized path of n and k-variate stochastic sequences y(ω) :=

{yt(ω)}t∈Z and X(ω) := {Xt(ω)}t∈Z, for some ω in the event space Ω. In particular,4 we let

yt(ω) ∈ Y ⊆ Rnand Xt(ω) ∈ X ⊆ Rk for all (ω, t) ∈ Ω × Z. For every ω ∈ Ω, the stochas-

tic sequences y(ω) and X(ω) thus live on the spaces (Y∞,B(Y∞),Py0) and (X∞,B(X∞),PX0 )

where the probability measures Py0 are PX0 are defined over the elements of the Borel σ-algebras

B(Y∞) and B(X∞). We write the filtered time-varying parameter as f̃t to distinguish it from the

true time-varying parameter ft. More precisely, we write the filtered time-varying parameter as

{f̃t(y1:t−1, X1:t−1;θ, f̄1)}t∈N, which depends naturally on the initialization f̄1 ∈ F ⊆ R, the past

data y1:t−1 = {ys}t−1
s=1 and X1:t−1 = {Xs}t−1

s=1, and the parameter vector θ ∈ Θ. For notational

simplicity we often omit the dependence on the data and write {f̃t(θ, f̄1)}t∈N instead.

We can now rewrite the score update in (5) as

f̃t+1(θ, f̄1) = ω +A s
(
f̃t(θ, f̄1), yt, Xt;β, λ

)
+Bf̃t(θ, f̄1) ∀ t ∈ N,

4The random sequences y and X are thus F/B(Y∞) and F/B(X∞)-measurable mappings y : Ω → Y∞ ⊆ Rn∞
and X : Ω → X∞ ⊆ Rk∞ where Rn∞ := ×t=∞t=−∞Rn and Rk∞ := ×t=∞t=−∞Rk denote Cartesian products of infinite
copies of Rn and Rk respectively, and Y∞ = ×t=∞t=−∞Y and X∞ = ×t=∞t=−∞X with B(Y∞) ≡ B(Rn∞) ∩ Y∞ and
B(X∞) ≡ B(Rk∞) ∩ X∞; see (Billingsley, 1995, p.159). Here, B(Rn∞) and B(Rk∞) denote the Borel σ-algebras
generated by the finite dimensional product cylinders of Rn∞ and Rk∞ respectively, F denotes a σ-field defined on the
event space Ω, and together with the probability measure P0 on F, the triplet (Ω,F,P0) denotes the common underlying
complete probability space of interest.
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where s(f̃t(θ, f̄1), yt, Xt;β, λ) denotes the unit scaled score function. To shorten the notation, we

define the random function

φt
(
f̃t(θ, f̄1);θ

)
:= φ

(
f̃t(θ, f̄1), yt, Xt;θ

)
:= ω +A s(ft(θ, f̄1), yt, Xt;β, λ) +Bft(θ, f̄1),

as well as the supremum of its derivative,

φ̄′t(θ) := sup
f∈F

∣∣∣A ∂s(f, yt, Xt;β, λ)

∂f
+B

∣∣∣. (11)

Note that φ̄t(θ) is also a random variable due to its dependence on (yt, Xt).

The following theorem states sufficient conditions for the stochastic sequence {f̃t(θ, f̄1)}t∈N
initialized at f̄1 ∈ F to converge almost surely, uniformly in θ ∈ Θ, and exponentially fast

to a limit stationary and ergodic (SE) sequence {f̃t(θ)}t∈Z that has Nf bounded moments. We

repeatedly make use of this notion of uniform exponentially fast almost sure convergence (e.a.s.),

which means that there exists a γ > 1 such that

sup
θ∈Θ

γt
∣∣∣f̃t(y1:t−1, X1:t−1,θ, f̄1

)
− f̃t

(
yt−1, Xt−1,θ

)∣∣∣ a.s.→ 0 as t→∞;

see Straumann and Mikosch (2006). Note that the limit sequence starts in the infinite past and

hence depends on the infinite past data yt−1 := {ys}t−1
s=−∞ and Xt−1 := {Xs}t−1

s=−∞, i.e.,

{f̃t(θ)}t∈Z ≡ {f̃t(yt−1, Xt−1;θ)}t∈Z. We thus establish the convergence of the sequence of

random functions {f̃t(·, f̄1)}t∈N defined on Θ with random elements taking values in the Banach

space (C(Θ,F), ‖ · ‖Θ) for every t ∈ N, to an SE limit {f̃t(·)}t∈Z with elements taking values in

(C(Θ), ‖ · ‖Θ), where ‖ · ‖Θ denotes the supremum norm on Θ. We have the following result.

THEOREM 1. Let F be convex, Θ be compact, {yt}t∈Z and {Xt}t∈Z be SE, s ∈ C(F ×Y ×X ×

B × Λ) and assume there exists a non-random f̄1 ∈ F such that

(i) E log+ sup(β,λ)∈B×Λ |s(f̄1, yt, Xt;β, λ)| <∞;

(ii) E log supθ∈Θ φ̄′1(θ) < 0.

Then {f̃t(θ, f̄1)}t∈N converges e.a.s. to the unique limit SE process {f̃t(θ)}t∈Z.

If furthermore ∃ Nf ≥ 1 such that

(iii) E sup(β,λ)∈B×Λ |s(f̄1, yt, Xt;β, λ)|Nf <∞;

and either
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(iv) sup(β,λ)∈B×Λ |s(f, y,X;β, λ)− s(f ′, X, f ;β, λ)| < |f − f ′| ∀ (f, f ′, y,X) ∈ F ×F ×

Y × X ;

or

(iv′) E supθ∈Θ φ̄′1(θ)Nf < 1 and f̃t(θ, f̄1) ⊥ φ̄′t(θ) ∀ (t, f̄1) ∈ N × F , where ⊥ denotes

independence;

then both {f̃t(θ, f̄1)}t∈N and the limit SE process {f̃t(θ)}t∈Z have Nf bounded moments, i.e.,

supt E supθ∈Θ |f̃t(θ, f̄1)|Nf <∞ and E supθ∈Θ |f̃t(θ)|Nf <∞.

The first claim of Theorem 1 makes use of the conditions in Bougerol (1993). Condition (i)

requires the existence of an arbitrarily small moment for the score, and condition (ii) requires the

spatial score update to be contracting on average. The uniqueness of the SE limit follows from

Straumann and Mikosch (2006). The second claim of Theorem 1 uses stricter moment conditions

and contraction conditions to obtain bounded moments of higher order for the filtered sequence.

This constitutes an extension of Proposition 1 in Blasques et al. (2014b) to the spatial score setting

with exogenous random variables Xt as well as vector and matrix arguments. Remark 1 below

highlights that in the special case where the score is uniformly bounded, then the filter has infinitely

many bounded moments under simpler conditions.

REMARK 1. Let |B| < 1. If s̄ := sup(β,λ,f,y,X)∈B×F×Y×X |s(f, y,X;β, λ)| <∞, then

supt E supθ∈Θ |f̃t(θ, f̄1)|Nf <∞ and E supθ∈Θ |f̃t(θ)|Nf <∞ hold for very Nf ≥ 1.

The proof of this statement follows immediately by noting that |f̃t+1| ≤
∑t−2

j=0 |B|j(|ω|+ |A| s̄)+

|Bt−1f̄1| <∞.

3.2 Asymptotic properties of the maximum likelihood estimator

The observation-driven structure of the time-varying spatial lag model allows us to perform max-

imum likelihood (ML) estimation in a straightforward way. Following equation (7), we define

the ML estimator (MLE) of the static parameter vector θ as an element of the arg max set of the

sample log likelihood function LT (θ, f̄1),

θ̂T (f̄1) ∈ arg max
θ∈Θ
LT (θ, f̄1), (12)
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where

LT (θ, f̄1) =
1

T

T∑
t=1

`t(θ, f̄1)

=
1

T

T∑
t=1

log pe

(
yt − h

(
(f̃t(θ, f̄1)

)
Wyt −Xtβ ; λ

)
− log |Z

(
f̃t(θ, f̄1)

)
|.

with Z(ft) defined below (8).

We can now use the stationarity, ergodicity, and moment results from Theorem 1 to establish

existence, consistency and asymptotic normality of the MLE. For existence, we make the follow-

ing assumption.

ASSUMPTION 1. (Θ,B(Θ)) is a measurable space and Θ is a compact set. Furthermore, h :

F → F ⊆ R and pe : Rn × Λ→ R are continuously differentiable in their arguments.

In Section 2, we have opted for the unit scaling of the score in our model. We can easily generalize

all results below to the case of a non-constant scaling function S as long as we assume S : F → R

is sufficiently smooth. Theorem 2 below establishes the existence and measurability of the MLE.

THEOREM 2. (Existence) Let Assumption 1 hold. Then there exists a.s. an F/B(Θ)-measurable

map θ̂T (f̄1) : Ω→ Θ satisfying (12) for all T ∈ N and every initialization f̄1 ∈ F .

To obtain consistency of the MLE, we impose conditions that ensure that the likelihood func-

tion satisfies a uniform law of large numbers for SE processes. We first ensures that the filter

f̃(θ, f̄1) is SE and has Nf bounded moments by application of Theorem 1.

ASSUMPTION 2. ∃ (Nf , f) ∈ [1,∞)×F and a Θ ⊂ R3+dλ such that

(i) sup(β,λ)∈B×Λ E|s(f, yt, Xt;β, λ)|Nf <∞,

and either

(ii) sup(f,y,X,β,λ)∈R×Y×X×B×Λ |B +A∂s(f, y,X;β, λ)/∂f | < 1,

or

(ii′) E supθ∈Θ φ̄′t,Nf (θ) = E supθ∈Θ supf |B +A∂s(f, yt, Xt;β, λ)/∂f | < 1

and f̃t(y
t−1, Xt−1,θ, f̄1) ⊥ φ̄′t+1,Nf

(θ) ∀ (t, f̄1) ∈ N×F .

Next, we ensure a bounded expectation for the likelihood function. To do this, we use the

notion of ‘moment preserving map’; see Blasques et al. (2014b)for a detailed description of the

moment preserving properties of a wide catalogue of functions. This allows us to derive the appro-

priate number of bounded moments of the likelihood function from the moments of its arguments

12



DEFINITION 1. (Moment Preserving Maps) A function H : Rk1 ×Θ → Rk2 is said to be n/m-

moment preserving, denoted as H ∈ MΘ(n,m), if and only if E supθ∈Θ |xt(θ)|n < ∞ implies

E supθ∈Θ |H(xt(θ);θ)|m <∞.5

ASSUMPTION 3. N` = min{Nlog pe , Nlog |Z|} ≥ 1, where log |Z| ∈ MΘ(Nf , Nlog |Z|) and

log pe ∈ MΘ

(
N,Nlog pe

)
, with N = min

{
Ny, Nx

}
, where Ny and Nx denote the moments

of yt and Xt, respectively.

The moment N` in Assumption 3 corresponds to the number of moments of the likelihood

function. Rather than assuming N` ≥ 1 as a high-level assumption, we follow Blasques et al.

(2014b) and define N` as a function of the score model constituents directly, thus obtaining

a set of low-level conditions for strong consistency. The requirements imposed in Assump-

tion 3 follow easily by application of a generalized Holder inequality to the likelihood expres-

sion below (12). Note that N = min
{
Ny, Nx

}
follows directly by the fact that the argument

(yt − h(f̃t(θ, f̄1)Wyt − Xtβ) of pe is linear in both yt and Xt, and supf∈F |h(f)| ≤ 1. The

current conditions extend those of Blasques et al. (2014b) by accounting for the presence of ex-

ogenous variables Xt in the model.

Theorem 3 now establishes the strong consistency of the MLE for the parameters of our time-

varying spatial score model if the data are SE.

THEOREM 3. (Consistency) Let {yt}t∈Z and {Xt}t∈Z be SE sequences satisfying E|yt|Ny <

∞ and E|Xt|Nx < ∞ for some Ny > 0 and Nx > 0 and let Assumptions 1, 2, and 3 hold.

Furthermore, let θ0 ∈ Θ be the unique maximizer of L∞(θ) on the parameter space Θ. Then the

MLE satisfies θ̂T (f̄1)
a.s.→ θ0 as T →∞ for every f̄1 ∈ F .

Remark 2 below highlights that if the score s is uniformly bounded, we can change Assumption 2

in line with Remark 1.

REMARK 2. We can substitute Assumption 2 in Theorem 3 by

(i) sup(β,λ,f,y,X)∈B×Λ×F×Y×X |s(f, y,X;β, λ)| <∞;

(ii) E log supθ∈Θ φ̄′1,1(θ) < 0 and |B| < 1.

Finally, we establish the asymptotic normality of the MLE. For this, we require the exis-

tence of a sufficient number of bounded moments for the likelihood function and its derivatives.
5The (k1×1)-vector xt satisfies E supθ∈Θ |xt(θ)|n <∞ if its elements xi,t(θ) satisfy E supθ∈Θ |xi,t(θ)|n <∞,

i = 1, ..., k1. The same element-wise definition applies when xt(θ) is a matrix.
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For notational simplicity, we define the function qt := q(f̃t(θ, f̄1), yt, Xt;β, λ) := log pe(yt −

h(f̃t(θ, f̄1)Wyt −Xtβ;λ), as well as the cross-derivatives

s(K1,K2,K3)(f, y,X;β, λ) :=
∂K1+K2+K3s(f, y,X;β, λ)

∂fK1∂βK2∂λK3
.

The (cross)-derivatives q(K1,K2,K3) and (log |Z|)(K1) are defined similarly. Assumption 4 now

imposes sufficient moment conditions for the asymptotic normality of the MLE.

ASSUMPTION 4. (i) s(K) ∈ MΘ(N , N
(K)
s ), q(K′) ∈ MΘ(N,N

(K′)
q ), N := (Nf , Ny, Nx),

with N as defined in Assumption 3;

(ii) N`′ ≥ 2, N`′′ ≥ 1, N (1)
f > 0, and N (2)

f > 0, with

N`′ = min

{
N (0,1,0)
q , N (0,0,1)

q ,
N

(1)
log |Z|N

(1)
f

N
(1)
log |Z| +N

(1)
f

,
N

(1,0,0)
q N

(1)
f

N
(1,0,0)
q +N

(1)
f

}
,

N`′′ = min

{
N (0,2,0)
q , N (0,0,2)

q , N (0,1,1)
q ,

N
(1,1,0)
q N

(1)
f

N
(1,1,0)
q +N

(1)
f

,
N

(1,0,1)
q N

(1)
f

N
(1,0,1)
q +N

(1)
f

,

N
(2,0,0)
q N

(1)
f

2N
(2,0,0)
q +N

(1)
f

,
N

(1,0,0)
q N

(2)
f

N
(1,0,0)
q +N

(2)
f

,
N

(1)
log |Z|N

(2)
f

N
(1)
log |Z| +N

(2)
f

,
N

(2)
log |Z|N

(1)
f

2N
(2)
log |Z| +N

(1)
f

}
,

N
(1)
f = min

{
Nf , Ns, N

(0,1,0)
s , N (0,0,1)

s

}
,

N
(2)
f = min

{
N

(1)
f , N (0,1,0)

s , N (0,0,1)
s , N (0,2,0)

s , N (0,0,2)
s , N (0,1,1)

s ,

N
(1,0,0)
s N

(1)
f

N
(1,0,0)
s +N

(1)
f

,
N

(2,0,0)
s N

(1)
f

2N
(2,0,0)
s +N

(1)
f

,
N

(1,1,0)
s N

(1)
f

N
(1,1,0)
s +N

(1)
f

,
N

(1,0,1)
s N

(1)
f

N
(1,0,1)
s +N

(1)
f

}
.

Rather than assuming N`′ ≥ 2 and N`′′ ≥ 1 directly as a high-level condition, we define

N`′ and N`′′ explicitly in terms of their lower-level constituents. The moment conditions in As-

sumption 4 extend those of Blasques et al. (2014b) by allowing for exogenous regressors. The

expressions may seem complicated at first, but we show below that their verification is often

straightforward; see also Blasques et al. (2014b) for the verification of similar moment conditions

in a wide range of observation-driven models.

The quantities N (1)
f and N (2)

f in Assumption 4 correspond to the moments of the first and

second derivatives of the filter f̃t(θ, f̄1) with respect to the parameter θ. Similarly, N`′ and N`′′

denote the moments of the first and second derivatives of the likelihood function, respectively.

Theorem 4 now establishes the asymptotic normality of the MLE. Here, int(Θ) denotes the

interior of Θ.
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THEOREM 4. (Asymptotic Normality) Let {yt}t∈Z and {Xt}t∈Z be SE sequences that satisfy

E|yt|Ny < ∞ and E|Xt|Nx < ∞ for some Ny > 0 and Nx > 0 and let Assumptions 1–4 hold.

Furthermore, let θ0 ∈ int(Θ) be the unique maximizer of L∞(θ) on Θ. Then,

√
T (θ̂T (f̄1)− θ0)

d→ N
(
0, I−1(θ0)J (θ0)I−1(θ0)

)
as T →∞,

whereJ (θ0) := E˜̀′
t(θ0)˜̀′

t(θ0)> is the expected outer product of gradients and I(θ0) := E˜̀′′
t (θ0)

is the Fisher information matrix.

Next we apply the theory developed above to consider the properties of the MLE for the

spatial score model from Section 2.2. We consider the model in (4) with Student’s t distributed

innovations with λ > 0 degrees of freedom. Consider a transformation function h that is (a.s.)

bounded away from minus one and one with uniformly bounded derivatives h(i),

− 1 < ρ ≤ ρt = h(ft) ≤ ρ̄ < 1 a.s.; sup
f∈F
|h(i)(f)| <∞ , i = 1, 2. (13)

For example, to restrict the correlation to the interval (−ρ̄, ρ̄), we can take h(ft) = ρ̄ tanh(ft),

where ρ̄ can be arbitrarily close to one. We have the following corollary.

COROLLARY 1. Consider the spatial score model with link function (13). If {yt}t∈Z and {Xt}t∈Z
are SE with E|yt| < ∞ and E|Xt| < ∞, then there exists a compact parameter space Θ with

|B| < 1 ∀ θ ∈ Θ, such that the MLE exists (a.s.) and is strongly consistent for any initialization

f̄1 ∈ F . If E|yt|2+ε < ∞ and E|Xt|2+ε < ∞ for some ε > 0, then the MLE is asymptotically

normal with covariance matrix given in Theorem 4.

The corollary is a direct consequence of the previous theorems and useful for to the spatial score

model that we apply in our empirical section later on. It shows that we can use the MLE both for

estimation and inference.

4 Monte Carlo study

To study the performance of the time-varying spatial score model in filtering out different dynamic

patterns for the spatial dependence parameter, we conduct a simulation study. In this study, we

also investigate whether the MLE is well-behaved and approximately normally distributed in larger

samples as shown in Section 3.

To limit the complexity of the experiment, we consider a spatial lag model without regressors.

We set the sample size to realistic values given the empirical application in Section 6. The data
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Figure 1: Simulated true spatial dependence process (black line), median filtered parameter
(dashed red line) and 2.5% and 97.5% (green lines) quantiles of the filtered parameters. The
figures are based on 250 replications.

generating process is

yt = Z(ft)et, et
i.i.d.∼ Student’s t(0, In; 5), (14)

where Z(ft) = (In − tanh(ft)W )−1, t = 1, ..., T and with cross-sectional dimension n = 9.

The spatial weight matrix W is specified similar to the row-normalized cross-border exposures

of the financial sectors of European countries as used in our empirical application. We simulate

250 data sets according to (14) using five processes with different dynamic patterns for the spatial

dependence parameter. These patterns are similar to the ones in Engle (2002).6

Figure 1 shows that the filtered spatial dependence parameters are able to capture the patterns

of the simulated processes quite accurately. At the low extremes of each path for ρt there is

some over-smoothing compared to the high extremes, but this is intuitively plausible: the signal

present in strongly cross-sectionally correlated data yt is much more apparent than that in weakly

correlated data.

In our second simulation study, we again use n = 9 cross-sectional units. We assume that

the disturbances are normally distributed with common variance σ2, and we include one regressor

variable Xt ∼ N(0, I9). The data-generating process is the Gaussian spatial score model laid out

in Section 2. In contrast to our previous experiment, the model is now correctly specified. We

simulate 500 paths yt using the parameters ω = 0.05, A = 0.05, B = 0.8, β = 1.5, and σ2 = 2.
6In particular, we consider a constant (ρt = 0.9); sine (ρt = 0.5 + 0.4 cos(2πt/200)); fast sine (ρt = 0.5 +

0.4 cos(2πt/20)); step function (ρt = 0.9− 0.5 ∗ I(t > T/2)); and ramp (ρt = mod (t/200)).
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Figure 2: Kernel density estimates of estimated parameters from 500 simulations for 3 sample
sizes (T = 500, 1000, 2000), vertical lines indicating the true parameter value

We plot the kernel density estimates of the distribution of the MLE for three different sample sizes,

T = { 500, 1000, 2000}, in Figure 2.

The figure clearly shows that for smaller sample sizes of around T = 500, the estimators are

still not perfectly normal. For larger sample sizes, however, we see a clear convergence to the

limiting result. In particular, for empirically relevant sample sizes of around T = 2, 000 given our

empirical application in the next section, all distributions look close to a normal centered around

the true parameter values. We therefore apply the MLE and its associated standard errors in our

empirical application below.

5 Data

In our empirical study we evaluate the evolution of perceived sovereign credit risk over a period

that includes the Eurozone sovereign debt crisis. In particular, we investigate the time-varying

features of the spatial dependence structure between the changes in sovereign credit default swap

(CDS) spreads, particularly in relation to a number of the policy responses by regulators. Our

spatial structure is directly linked to the bank sectors’ cross-exposures to other sovereigns and

financial sectors within the European Union.

5.1 Credit default spread data

Since EU countries have been affected by the crisis to different degrees, sovereign credit spreads in

Europe are strongly cross-sectionally dependent. Figure 3 shows the credit default swap spreads
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Figure 3: Credit default swap spreads of eight European sovereigns, Feb 2, 2009 – May 12, 2014.
The different countries are split in two groups.

from February 2, 2009, until May 12, 2014 (1375 daily observations) for the eight euro area

countries in our sample: Belgium, France, Germany, Ireland, Italy, the Netherlands, Portugal, and

Spain. As in Acharya et al. (2013), we use relative changes (log differences multiplied by 100) of

U.S. Dollar-denominated sovereign CDS spreads for each of these countries using data obtained

from Bloomberg.

The time series reveal clear common patterns, particularly among the non-stressed Eurozone

countries (Germany, France, Netherlands, Belgium, and to a lesser extend Spain and Italy). At

the same time, there are temporary dissimilarities: for example, the evolution of the Ireland credit

spread appears to be roughly in line with that of the other countries before mid 2010 and after

mid 2012, but departing during the height of the European sovereign debt crisis. The combination

of commonalities with possible temporary changes in commonality warrants the use of the time-

varying spatial score model proposed in this paper.

5.2 Other explanatory variables

Our empirical model contains two regressors that capture the state of European financial markets;

see also Caporin et al. (2013). The first variable is the change in the volatility index VStoxx. The

VStoxx is measured using the implied volatility of the EuroStoxx 50 and captures changes in risk

appetite. Our second variable is the difference between the three month Euribor and the overnight

rate EONIA. This measure captures financial sector stress and the perceived counterparty credit

risk between banks.

We also incorporate two country-specific regressors, namely the (log) returns of the main stock
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Table 1: List of country-specific stock indices included in the time-varying spatial score model as
regressor variables.

Belgium BEL 20 Price Index France CAC 40 Price Index
Germany DAX 30 Price Index Ireland ISEQ 20 Price Index
Italy FTSE MIB Price Index Netherlands AEX Price Index
Portugal PSI 20 Price Index Spain IBEX 35 Price Index

index in each of the respective countries, and the absolute changes in 10-year government bond

yields. We list the local stock indices in Table 1. Local stock market returns are a measure of the

well-being of the local economy and in this way an indirect measure of the ability of governments

to pay off debt in the long run through tax collection. We expect a negative relation with credit

spread changes. The changes in 10-year yields mainly reflect the long-term borrowing costs of

governments, and we expect a positive relation with sovereign credit default swap spreads.

All variables are included in the model with a lag of one period. The data are obtained from

Datastream. Augmented Dickey-Fuller unit root test statistics indicate that all time series are

stationary. Table 2 presents the summary statistics.

5.3 Spatial weights matrix

The choice of the spatial weight matrix is a key ingredient of the spatial model, as it determines

the structure of the ‘economic distance’ between the sovereign CDS spread changes and defines

the channel for cross-sectional spillovers. Recently, domestic banks’ cross-border exposures have

been identified as relevant pricing factors for sovereign credit spreads, see for example Kallestrup

et al. (2013), Korte and Steffen (2013), and Beetsma et al. (2012). A possible reason for this

connection is outlined in Korte and Steffen (2013). They argue that until recently, risk management

rules for banks implied a so-called ‘zero risk weight channel’: European banks were not required

to hold capital buffers against EU member states’ debt. This led to regulatory arbitrage incentives

for banks to hold more government debt; see also Acharya and Steffen (2013). At the same time

and due to the banks’ willingness to take on government debt, governments were able to issue

large amounts of debt, thus creating a potentially problematic feedback loop: if sovereign credit

risk materialized, banks could become stressed, and due to possible bail-outs, governments in turn

might become stressed as well.

To account for this type of possible feedback loop, we use a weight matrix that is constructed

from cross-border debt data provided by the Bank for International Settlements (BIS).7 We average
7The data can be found at http://www.bis.org/statistics/consstats.htm, Table 9B: International bank claims, consoli-
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Table 2: Data summary. Stock index log returns are calculated from closing prices. All stock
indices are quoted in domestic currency (Euro).

mean min. 25% quant. median 75% quant. max.
CDS spread changes (log changes*100)

Belgium -0.08 -19.34 -1.09 -0.07 1.78 17.04
France -0.03 -19.44 -1.84 -0.07 1.56 19.82
Germany -0.07 -26.71 -1.89 0.00 1.56 25.43
Ireland -0.11 -32.69 -1.57 -0.03 1.32 26.81
Italy -0.03 -43.73 -2.09 -0.10 1.76 20.27
Netherlands -0.09 -22.20 -1.66 -0.03 1.39 14.92
Portugal 0.02 -47.38 -1.80 0.00 1.66 20.54
Spain -0.04 -37.04 -2.02 0.00 1.99 25.17

local stock index returns (log returns*100)
Belgium 0.04 -5.49 -0.59 0.03 0.69 8.96
France 0.03 -5.63 -0.68 0.02 0.80 9.22
Germany 0.06 -5.99 -0.57 0.07 0.75 5.90
Ireland 0.06 -6.79 -0.62 0.02 0.83 6.95
Italy 0.01 -7.04 -0.88 0.04 1.03 10.68
Netherlands 0.04 -5.34 -0.58 0.04 0.71 7.07
Portugal 0.01 -5.51 -0.69 0.02 0.77 10.20
Spain 0.02 -6.87 -0.82 0.01 0.87 13.48

local long-term bond yields (changes)
Belgium -0.16 -30.2 -2.6 -0.10 2.2 34.4
France -0.14 -26.2 -2.6 -0.12 2.4 24.2
Germany -0.13 -25.6 -2.8 -0.10 2.3 18.5
Ireland -0.20 -102.8 -3.6 -0.25 2.8 75.0
Italy -0.11 -78.0 -3.3 -0.09 3.1 50.9
Netherlands -0.16 -22.4 -2.8 -0.05 2.1 15.6
Portugal -0.07 -147.0 -5.1 -0.01 5.1 168.6
Spain -0.11 -88.3 -3.6 0.00 3.5 37.3

Eurozone-wide variables
VStoxx change -0.02 -10.94 -0.86 -0.11 0.67 12.79
term spread 0.35 -0.37 0.14 0.34 0.52 1

the bilateral raw exposure data from 2007 Q4 - 2008 Q2. As the consolidated data are published

on the BIS homepage with a lag of approximately two quarters, this avoids a possible source of

endogeneity for W . The resulting weight matrix is denoted as Wraw.

Due to large differences in the sizes of the member countries’ financial sectors, the weights

implied by Wraw vary significantly. To mitigate the size of these differences, we form three

discrete categories of mutual lending (‘low’, ‘medium’, and ‘high’). The entries of the resulting

dated - immediate borrower basis. Last accessed on March 20, 2014.
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matrix Wcat are constructed as

Wcat,ij =


1, if 0 < Wraw,ij ≤ Q0.33(Wraw),

2, if Q0.33(Wraw) ≤Wraw,ij < Q0.67(Wraw),

3, if Q0.67(Wraw) ≤Wraw,ij ,

where Qp(Wraw) denotes the p-th quantile of the exposure data contained in Wraw. After con-

structingWcat, we row-normalize it to obtain proper weights that sum to one. An advantage of the

categorical matrix over the raw matrix is that the categories are almost time-invariant, so that using

a constant W can be justified. In her spatial model for banking sector interconnections, Tonzer

(2013) uses a similar data set, and averages the entries in Wraw over her sample period. Another

alternative would be to normalize the exposure data by the GDP of the country in order to relate

the size of multual debt to the size of the economy. We investigate this and other alternatives for

constructing the weight matrix in our robustness checks in Section 6.2.

6 Results

6.1 Main results

Table 3 contains the estimation results for both the static spatial lag model and the time-varying

spatial score model for normally and Student’s t-distributed disturbances. For the benchmark

models, we have a common, time-invariant variance. We relax this assumption in Section 6.2.

For the static model, we find strong evidence for spatial dependence, indicated by the high

estimate and small standard error for ρ . Given that CDS spread changes are fat-tailed, it is

not surprising to find that the model fit improves substantially for the Student’s t vis-à-vis the

normal distribution. The likelihood value increases by more than 1800 points upon adding a

single parameter to the model, thus decreasing the AICc.

The dynamic spatial score model based on the normal distribution increases the likelihood

by approximately 160 points compared to the static Gaussian model at the cost of adding two

model parameters. The dynamics of the spatial dependence parameter are highly persistent with

a value of B close to unity. The unconditional mean of ft equals ω/(1 − B) ≈ 0.8524 with

tanh(0.8524) ≈ 0.6924. Accounting for the fact that the expected value of tanh(ft) is slightly

larger than this due to Jensen’s inequality, we see that the unconditional level for the Gaussian

spatial score model is close to the static estimate of 0.7249. Similarly, the dynamic Student’s t

model increases the likelihood by approximately 68 points compared to its static counterpart. The
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Table 3: Estimated parameters and their robust (sandwich) standard errors in parentheses, for the
static spatial lag model and the time-varying spatial model, based on normally (N ) and Student’s t
(tλ) distributed disturbances. The maximized loglikelihood value (logL) and the Akaike informa-
tion criterion, corrected for finite numbers of observations, (AICc) are also reported. Estimation
period is February 2, 2009 – May 12, 2014.

Static model Time-varying model
N tλ N tλ

ρ 0.7249 0.7146
(0.0071) (0.0062)

ω 0.0156 0.0181
(0.0074) (0.0192)

A 0.0144 0.0168
(0.003) (0.0085)

B 0.9817 0.9794
(0.009) (0.0219)

log(σ2) 1.8131 0.8392 1.8043 0.8426
(0.0509) (0.0444) (0.0504) (0.0446)

VStoxx -0.0901 -0.0261 -0.0756 -0.0261
(0.0473) (0.0164) (0.0326) (0.0158)

term spread 0.0239 0.0320 0.1084 0.0818
(0.1065) (0.066) (0.0998) (0.0656)

local stocks -0.2031 -0.1156 -0.1769 -0.1122
(0.0426) (0.0193) (0.035) (0.0187)

local 10Y yields 0.0256 0.0184 0.0258 0.0186
(0.0041) (0.0027) (0.0039) (0.0027)

const -0.0137 -0.0341 -0.0660 -0.0578
(0.0386) (0.0216) (0.0393) (0.0244)

λ 2.5202 2.5649
(0.1246) (0.1288)

logLik -26396.6 -24574.5 -26244.4 -24506.1
AICc 52807.3 49165.1 52507.0 49032.4

unconditional level of tanh(ft) again lies close to its static estimate.

On the basis of the reported AICc values, the data clearly favors time variation in the spatial

dependence parameter ρt using the Student’s t distribution for both the disturbance et and the tran-

sition dynamics of ρt. The estimated degrees of freedom parameter λ for the Student’s t models

is around 2.5. Hence there is a substantial degree of fat-tailedness. A part of the unconditional

fat-tailedness may also be due to the presence of volatility clustering. We discuss these robustness

issues in more detail in Section 6.2.

The coefficients for the included regressors have the same signs throughout the four model

specifications. Although the regression estimates vary somewhat, particularly between the nor-

mal and Student’s t based models, the overall picture remains the same. A higher implied stock
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volatility (VStoxx) correlates with lower CDS spreads. This is consistent with the phenomenon of

‘flight to quality’ from stocks to bonds when the price of risk increases in stock markets. A higher

term spread on the interbank credit market implies a higher tendency to borrow overnight. This

is correlated with higher CDS spread changes and may be a sign of a perceived bank-sovereign

feedback loop: problems in the functioning of the interbank lending market may induce a fear of

possible future bailouts and subsequent sovereign debt problems. Local stock market upturns have

a dampening effect on sovereign credit spreads, while increases in long-term bond yields point to

higher borrowing costs for governments and have a positive relation with sovereign CDS spread

changes.

Figure 4 presents the evolution of the filtered spatial dependence parameter. We observe that

the path of the spatial dependence coefficient corresponding to the Student’s t spatial score model

is more robust to outliers than its normal counterpart. This phenomenon is a common finding in the

volatility literature; see for example Creal et al. (2013) and Harvey (2013). Comparing the score

expressions in equations (8) and (9), it is clear that the time-varying spatial score model shares this

feature. While the normal score is unbounded in the dependent variable and the regressors, the

Student’s t score contains a compensating effect in the denominator that leads to a down-weighting

of large positive or negative observations; see the factor w̃t in (9). This leads to a different pattern

between the two filtered spatial dependence series for the two distributions, particularly during

mid 2010, the first half of 2012, and late 2013.

Throughout the sample period, systemic risk as captured by the spatial dependence coefficient

is high, fluctuating around a value of 0.75 until the end of 2012. At that time, the level starts

to decline towards a lower level of around 0.5 to 0.6. The pattern can be related to a number

of important policy events during the European sovereign debt crisis.8 Some events have a high

visible impact. For example, the first Long Term Refinancing Operation (LTRO) at the end of

2012 caused a sudden and sharp drop in the spatial dependence parameter. The effect, however,

was short-lived and the value of ρt bounced back soon after to similar levels as before. The

second LTRO hardly has any visible effect on the spatial dependence parameter. It is only until

Mario Draghi’s speech at the Global Investment Conference in London in July9 2012 and the

subsequent announcements and implementation of the Outright Monetary Transactions (OMT)

and the European Stability Mechanism (ESM) in the months thereafter, that the fear of perceived

spillover effects appears to be mitigated on a more permanent basis and ρt comes down to a lower
8A list of events can be found in Figure B.1 in the supplemental appendix. See also Table B.1 with a list of sources.
9Quote: “Within our mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe me, it will

be enough.” Source: see Table B.1.
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Figure 4: Filtered spatial dependence parameters obtained by imposing normally (dashed line) and
Student’s t (solid line) distributed disturbances.

level on a more permanent basis.

6.2 Extensions

In this section, we extend the time-varying spatial score model in different directions to investigate

the robustness of our results. First, we allow for sovereign-specific volatility clustering. Second,

we add an unobserved mean factor to try to distinguish common effects from spatial effects. Third,

we re-estimate the models using different choices of spatial weight matrices.

Unobserved time-varying volatility factors

Given the patterns in the data, it is clearly unrealistic to assume a common, time-invariant variance

for all sovereign CDS spread changes. We therefore extend the baseline model by adding a time-

varying diagonal covariance matrix Σt for the disturbances in the spatial model,

yt = h(ft)Wyt +Xtβ + et et ∼ pe(0,Σt), with (15)

Σt := Σ(fσt ) = diag
(
σ2

1(fσ1,t), . . . , σ
2
n(fσn,t)

)
= diag

(
exp(fσ1,t), ..., exp(fσn,t)

)
, (16)

where fσt = (fσ1,t, ..., f
σ
n,t)
′ is a vector of sovereign-specific variance factors. As before, we endow

the factors fσj,t with score updating dynamics. To enforce parsimony, we allow for sovereign-
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specific intercepts in the score updating equations for fσt , but impose common score sensitivity and

persistence parametersAσ andBσ, so fσj,t+1 = ωσj +Aσ sσj,t+Bσ fσj,t; see Appendix A for further

details. Although the covariance matrix of the disturbance vector Σt is diagonal, the reduced form

covariance matrix of yt is still a full (time-varying) matrix Cov(yt) = Z(ft)ΣtZ(ft)
′.

Unobserved time-varying mean factor

To distinguish commonalities from spatial spill-overs, we also extend the model with an additional

unobserved time-varying mean factor. This factor is independent of the spatial lag structure,

yt = h(ft)Wyt +Xtβ + Z(ft)
−1λfλt + et, et ∼ tλ0(0,Σt) (17)

where λ0 is the degrees of freedom parameter of the Student’s t distribution, λ = (λ1, . . . , λn)′ is

an (n×1)-vector of factor loadings, and fλt ∈ R is an additional time-varying parameter endowed

with score updating. Explicit formulas for the dynamics are given in Appendix A. Rewriting

equation (17) in reduced form, we obtain

yt = λfλt + Z(ft)Xtβ + Z(ft)et, (18)

which allows for a direct comparison with the benchmark model without spatial lag structure,

yt = Xtβ + λfλt + et. (19)

Table 4 compares the goodness of fit of the seven empirical model specifications we consider

in our analysis. Each extension improves the performance of the model. The model without any

spatial structure performs worst, despite featuring an unobserved time-varying mean and time-

varying volatilities. We therefore conclude that explicitly accounting for dynamic contemporane-

ous spillovers of shocks, as is done by the time-varying spatial score model, is an important feature

when analyzing the dynamics of sovereign credit spread data.

The parameter estimates from the full model with spatial score updating, time-varying vari-

ances, and unobserved time-varying mean factor are given in Table 5. In contrast to the spatial

factor, the variance factors and particularly the mean factor are less persistent, which is seen by the

values of Bσ and Bλ, respectively. This is off-set by a larger impact of the scores in the transition

equations; see the values of Aσ and Aλ.

None of the parameters λi, i = 1, . . . , n, corresponding to the mean factor are individually
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Table 4: Comparison of goodness of fit of all empirical specifications considered. The largest
loglikelihood value (logL) and smallest Akaike Information Criterion (AICc) are bolded.

Static spatial Time-varying spatial

et ∼ N(0, σ2In) tλ(0, σ2In) N(0, σ2In) tλ(0, σ2In)

logL -26396.63 -24574.48 -26244.45 -24506.11
AICc 52807.35 49165.06 52507.03 49032.39

Time-varying spatial-t Benchmark-t

(+tv. volas) (+mean f.+tv.volas) (+mean f.+tv.volas)

logL -24175.70 -24156.96 -26936.15
AICc 48389.97 48375.30 53927.42

significantly different from zero. Jointly, however, these parameters improve the model fit, as is

indicated by the AICc in Table 4. Also, the loading estimates have an economic interpretation: the

non-stressed Eurozone countries have a negative coefficient λi, while the most stressed countries

during part of the European sovereign debt crisis (Portugal, Ireland, Spain) have positive loadings.

With respect to the dynamic spatial dependence, the qualitative implications of the full model

and the basic time-varying spatial t-model are very similar. This is shown in Figure 5. Omitting

the additional variance and mean dynamics leads to a slight upward adjustment in the filtered

spatial dependence parameter, but the overall pattern does not change.

Results from standard residual diagnostic tests are given in Table 6. The full model substan-

tially reduces auto-correlations and ARCH effects for most individual series.Furthermore, cross-

correlations are, on average, much lower for the model residuals than for the raw data. The full

correlation matrices are provided in the supplemental appendix. The supplemental appendix also

contains further robustness results using absolute instead of relative CDS spread changes as a

dependent variable. Apart from an overall lower level of spatial dependence and a more clearly

visible impact of the financial crisis at the beginning of the sample, the pattern for the spatial

dependence parameter is similar to that obtained using log changes.

Choice of the spatial weight matrix

So far, all results reported were obtained using the categorical spatial weight matrixWcat described

in Section 5.3. As a final robustness check, we re-estimate the model using different choices for

W : a matrix containing the averaged raw exposure data (Wraw), a model in which the matrix

of exposure data is updated quarterly (Wdyn), and a binary matrix indicating the geographical
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Table 5: Estimated parameters and their numerically approximated (sandwich-)standard errors in
parentheses, for the full model featuring spatial score updating, time-varying sovereign-specific
variances, an unobserved mean factor, and t-distributed disturbances. The maximized loglike-
lihood value (logL) and the Akaike information criterion (AICc) are also reported. Estimation
period is February 2, 2009 - May 12, 2014.

ωλ -0.0012 ωσ1 Belgium 0.0426 ω 0.0307
(0.0252) (0.0125) (0.0229)

Aλ 0.3494 ωσ2 France 0.0448 A 0.0190
(0.8937) (0.0142) (0.0070)

Bλ 0.6891 ωσ3 Germany 0.0573 B 0.9636
(0.1065) (0.0155) (0.0271)

λ1 Belgium -0.2776 ωσ4 Ireland 0.0301 const. -0.0621
(0.2308) (0.0100) (0.0240)

λ2 France -0.2846 ωσ5 Italy 0.0471 VStoxx -0.0257
(0.3137) (0.0136) (0.0157)

λ3 Germany -0.2029 ωσ6 Netherlands 0.0443 term sp. 0.0693
(0.2811) (0.0132) (0.0705)

λ4 Ireland 0.4050 ωσ7 Portugal 0.0524 stocks -0.1020
(0.6928) (0.0153) (0.0183)

λ5 Italy -0.1604 ωσ8 Spain 0.0591 yields 0.0173
(0.2429) (0.0160) (0.0026)

λ6 Netherlands -0.1891 Aσ 0.1826 λ0 3.1357
(0.2519) (0.0230) (0.1977)

λ7 Portugal 0.4614 Bσ 0.9479
(0.8334) (0.0135)

λ8 Spain 0.0988 logLik -24156.96
(0.3635) AICc 48375.30

Table 6: Diagnostic tests for the residuals of the full model featuring a spatial updating factor,
volatilities, and an additional mean factor, all driven by dynamic score updating, compared to the
raw CDS spread changes. LB refers to the Ljung-Box test for residual serial correlation, ARCH
LM refers to the test for remaining auto-correlation in the squared residuals. The right-hand panel
contains averages of pairwise cross-correlations.

sovereign LB test stat. ARCH LM test stat. average cross-corr.
raw residuals raw residuals raw residuals

Belgium 108.64 15.93 169.91 25.53 0.70 0.07
France 49.48 30.42 160.44 43.32 0.66 -0.01
Germany 62.61 19.49 142.70 53.78 0.63 -0.07
Ireland 129.89 17.53 302.23 87.11 0.64 -0.07
Italy 99.02 42.43 102.13 150.88 0.71 0.08
Netherlands 55.69 33.29 124.41 20.96 0.64 -0.05
Portugal 167.91 32.56 189.35 56.89 0.65 0.03
Spain 105.81 48.88 253.68 154.42 0.69 0.06
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Figure 5: Filtered spatial dependence parameters obtained from the basic time-varying spatial
score model with t-distributed disturbances (green) as well as with sovereign-specific, dynamic
variances and an unobserved mean factor (red).
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Table 7: Comparison of likelihood values for the time-varying spatial score model with Student’s
t disturnbances using different spatial weights matrices.

Wraw Wdyn Wcat Wgeo

logL -24745.56 -24679.44 -24506.11 -25556.85

neighborhood of the countries in our sample (Wgeo). We also experimented with a weights matrix

in which we weighted the raw exposures of the financial markets by the countries’ respective GDP.

However, this did not improve the model’s fit. As the different models all have the same number

of parameters, we can simply compare the likelihood values at the optimum.

Table 7 shows that the goodness of fit is quite different between the different specifications.

The model with a categorical weights matrix provides the best fit. Despite the differences in fit,

however, the parameter estimates and the dynamics of the spatial dependence parameter are very

robust towards the specifiation ofW , and none of the qualitative implications of our model change.

It is particularly interesting to see that the weight matrices based on economic distances as

measured through financial cross-exposures (Wraw, Wdyn, and Wcat) provide a much better fit

than a matrix based on geographic distances (Wgeo). Some categorization is needed as well in

order to make the sizes of cross-exposures comparable. However, as mentioned before, scaling
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the exposures by the size of the economy (as measured by GDP) did not provide an improvement

in terms of model fit.

7 Conclusion

In this paper, we propose a new model for time-varying spatial dependence in panel data sets.

The model extends the widely used spatial lag model to a time-varying parameter framework by

endowing the spacial dependence parameter with generalized autoregressive score dynamics and

fat tails. Allowing for time-variation is particularly useful if we apply spatial models over longer

time periods, where we can no longer be sure that the spatial dependence parameter is constant.

The fat-tailed feature of our model is useful in a setting where we apply the model to financial

data, which typically exhibit fatter tails than the normal.

We established the theoretical properties of our new model: the dynamics of the model are

optimal in the sense that with each update step they locally reduce the Kullback-Leibler distance

of the statistical model to the true unknown conditional density. Moreover, we established con-

ditions for model invertibility and for consistency and asymptotically normality of the maximum

likelihood estimator in this model.

In our empirical study based on our time-varying spatial score model, we showed that Euro-

pean sovereign CDS spread changes exhibit a strong, time-varying degree of spatial dependence.

Cross-border debt linkages appear as a suitable transmission channel for the spatial spillovers.

In our final model, we incorporated a time-varying common mean factor as well as time-varying

volatilities into the specification. Using the filtered time-varying parameters of this final model,

we found evidence for a break in spatial dependence towards the end of 2012. This illustrates

that policies by regulators have at least been partly effective in breaking the high spill-over effects

prevalent during the height of the European sovereign debt crisis.
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Appendix A Model extensions

We restrict the model extensions to the case of Student’s t distributed disturbances. We obtain the

equations for the Gaussian case as a special case by letting λ0 →∞.

We assume that the vector of variance factors fσt in (16) follows an n-dimensional score process

as given by

fσt+1 = ωσ +Aσ∇σt +Bσfσt

with ω = (ωσ1 , . . . , ω
σ
n)′, and Aσ, Bσ ∈ R. We thus allow for sovereign-specific intercepts in the

variance score update, but restrict the dynamic parameters Aσ and Bσ to be common across all

countries. This results in a parsimonious, yet flexible model. The score of the spatial dependence

factor ft is given in (9), with Σ replaced by Σt. For the variance factors, the score vector is

∇σt =
∂`t
∂fσt

=
1

2


(1+λ−1n) exp(−fσ1,t)·

(
y1,t−h(ft)

∑n
j=1 w1jyj,t−x′1,tβ

)2
1+λ−1(yt−h(ft)Wyt−Xtβ)′Σ(fσt )−1(yt−h(ft)Wyt−Xtβ)

− 1
...

(1+λ−1n) exp(−fσn,t)·
(
yn,t−h(ft)

∑n
j=1 wnjyj,t−x′n,tβ

)2
1+λ−1(yt−h(ft)Wyt−Xtβ)′Σ(fσt )−1(yt−h(ft)Wyt−Xtβ)

− 1

 ,

with X ′t = (x1,t, . . . , xn,t), and xi,t ∈ Rk×1.

In the presence of an additional mean factor fλt as in (18), the score update for ft changes

from (9) to

∇t =

[
w̃t ·

(
Wyt −Wλfλt

)′
Σ−1

(
yt − h(ft)Wyt −Xtβ − Z(ft)

−1λfλt

)
− tr(Z(ft)W )

]
· ḣ(ft),

w̃t = (1+λ−1n)

1+λ−1(yt−h(ft)Wyt−Xtβ−Z(ft)−1λfλt )′Σ−1(yt−h(ft)Wyt−Xtβ−Z(ft)−1λfλt )
. (A.1)

The updating equation for fλt is given by

fλt+1 = ωλ +Aλ∇λt +Bλfλt ,

with score

∇λt = w̃t · (Z(ft)
−1λ)′Σ−1(yt − h(ft)Wyt −Xtβ − Z(ft)

−1λfλt ). (A.2)
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Finally, in the benchmark model (19), the score expression equals that in (A.2) with W = 0 and

Z(ft) ≡ In.
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